HYDRODYNAMICS AND MASS TRANSFER IN A LIQUID
LAYER AT A ROTATING SURFACE

N. S. Mochalova, L. P. Kholpanov, UDC 532.526.75
and V. Ya. Shkadov

The hydrodynamics and the mass transfer in a liquid layer at a rofating surface are analyzed
in the boundary-layer approximation without undulation.

A centrifuge with a spiral channel rotating at a constant angular velocity [1-4] is a modified version
of film-type heat exchangers with vortex flow. The thin liquid film in such an apparatus, while flowing
from the center to the periphery along the inside surface, is in contact with a gas stream. The authors
analyze here the hydrodynamics and the mass transfer in such an apparatus.

1. Let the x axis be an arc along the wetted wall of a spiral channel and let the y axis be normal
to that wall. The liquid will be assumed incompressible, the flow will be assumed steady and isothermal.
A thin layer of liquid moves without undulation along an Archimedes spiral whose equation in polar coordi-
natesr, ¢ is r = k6 (k > 0). It is assumed that the pressure gradient in the layer is due to rotation only,
On these premises, then, the flow of a thin layer can be described by the Prandtl equation:
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in cylindrical coordinates, r, =dr /de, Tgg = d?r /d6%, and where X, Y are the projections of body forces
on the x axis and the y axis, respectively. The body forces acting on the particles of a liquid film are the
centrifugal force Fo = w?R(x) and the Coriolis force of inertia Fj = 2« x v. If the spiral reverses its direc-
tion of rotation, this will be reflected only in the second of these forces. The projections of these body
forces on the x and y axes are

A = 0*R(x)cosa - 20r,

(2

Vo= — @R (X) sina F 20u,
where the upper sign corresponds to clockwise rotation and the lower sign corresponds to counterclock-

wise rotation, and where a is the angle formed by the vector of the centrifugal force and the tangent in
the positive direction; since tana =r/rg = 6, hence
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In the variables 6, y the system of equations (1) becomes
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From the condition of adhesion at the wall it follows that
u=10 v=20 €3]
aty =0.

We will solve system (3) by the method of integral relations, With friction at the surface assumed
negligible, we have at y = é the conditions
du

y

=0, p=p, = const, u =2, (5)

The boundary conditions (4) and (5) are satisfied by the second-degree polynomial

u:v[Q —g——(-—g—)g], (6)

8(x)
with v found from the expression for the flow rate \ udy = q = const:
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Eliminating the pressure from the second equation in (3), we find 8p/96. Using this quantity and inte-
grating the first equation in (3) with respect to y over the entire boundary layer, we obtain an equation
which is nonlinear with respect to 6(6). In dimensionless coordinates this equation becomes
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where the upper sign corresponds to clockwise rotation and the lower sign corresponds to counterclock-
wise rotation.

Equation (8) was solved numerically, on a model M-20 computer, by the Runge —Kutta method with
an automatic step adjustment. The curves in Fig. la represent a typical relation between the thickness
of the liquid film and the length of the spiral on which it has formed, for various values of the hydrody-
namic parameters,

The film thickness in a spiral centrifuge becomes constant under all known operating conditions,
The time necessary for the film thickness to become constant is a function of the Reynolds number and
of the angular velocity: as either increases, the apparatus will operate with a constant film thickness
sooner. When § is large, this constant film thickness can be found from Eq. (18) analytically by inserting
there dé6/dé = 0:

3 /3v0,g
rg@® -

§=" (9)

According to (9), the film thickness increases with higher flow rates and decreases with higher angular
velocity, depending also on the characteristic spiral parameter ry/6,.
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Fig. 1. Dimensionless thickness of liguid film, as a function of the spiral
length: a: for 1) k=1 and w =10 with Re =100; 2) k =1 and w = 1 with Re
=100; bsfor k=1 and w =1 with Re =20; 6 € [r/2, 27].

Fig. 2. Thickness of the liquid film (curves 1 and 3) and thickness of the
diffusion layer (difference between curves 1 and 2 or between curves 3 and
4), as functions of the spiral length: 1, 2) k=1,x =10, Re =100, Pr =1000;
3,4Yk=1, w=1, Re =100, Pr =100.

Under normal operating conditions the film spreads thinly over the walls of the spiral channel. For
a solution corresponding to this condition it is required that d6/d¢ be negative. Otherwise the operation
of a spiral centrifuge would break down and "stalling™ would result, as indicated in Fig. 1b. The film
thickness first decreases, as usually, but then increases rapidly at some distance along the spiral (6 = 5),
which means this mass exchanger has ceased to operate normally. The "stalling™ condition is largely
affected by the spiral parameter k and the angular velocity, We will, therefore, evaluate the "stalling"
conditions at various speeds.

el

a.

b,

<« 1, Then dé/d6 is positive, i.e., at low speeds the apparatus almost always "stalls."

> 1, Now
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For a given spiral at high speeds it is possible to match hy and 6, so as to satisfy condition (10)
and avoid "stalling."

c. At intermediate speeds the apparatus operates without "stalling," when
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We will now determine the friction force 7 on a liquid film along the entire length 1, of a spiral cen-
trifuge:

L
T = f'“ (gi‘) dx == 1.440v173 (—(’3_) gL, (12)
& Y y=0 0

2. If the resistance to mass transfer is concentrated within the liquid phase, then the coefficient of
mass transfer to the liquid phase can be calculated from the equation of convective diffusion

de | dc 0%
U—— -+ U —=— =
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(13)

where velocities uand v must be taken from the solution to the hydrodynamic problem (6). It is assumed
that the diffusivity remains constant and that the molecular transport is much smaller transversely than
lengthwise. We now introduce a new system of coordinates by a following transformation of the original
system: y; =—y + 6 and x4 =X, where the boundary conditions are
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for ;=0 c¢=c.,

2
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These conditions are satisfied by the third-degree polynomial

(1)

Integrating (13) with respect to y from y =6-—-04 toy =6, i.e., over the thickness of the diffusion layer,
and considering the boumdary conditions (14), we obtain
dst . 80D

dr (-8 (16)

where s =64/6.
The solution to Eq. (16) will be written in quadratures:
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For the flow mode with a constant film thickness Eq. (17) becomes
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Let us now find the length of path along the spiral where the diffusion layer attains full growth, i.e., its
thickness becomes equal to that of the liquid film.

From (18) we have the length through which the diffusion layer grows

[ D 46 (20)

The value found for the thickness of the diffusion layer will be used for determining the mean coefficient
of mass transfer to the liquid film. For this, the diffusion current to the interphase boundary will be
averaged over some characteristic distance L

L
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The characteristic dimension of a spiral can vary, depending on the test conditions and depending on the
actual geometrical length L of the spiral. For this reason, we distinguish several possible cases;

a. L <KL¥*, where L* is calculated according to formula (20), In this case the thickness of the dif-
fusion layer is much less than that of the liquid film, i.e., the diffusion layer does not build up
to the film thickness. In physical terms, this corresponds to high values of the Prandtl number
(Fig. 2). The length of the spiral L. becomes its characteristic dimension. Then, expanding
the expression under the square-root sign in (21) into a series and retaining the first term only,
we obtain a formula for the coefficient of mass transfer to the liquid phase

60 D
- 11— al. |,
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or, taking into account (9) and (19),
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Fig. 3. Thickness of the liquid film (curve 1) and thickness of the
diffusion layer (difference between curves 1 and 2), as fimctions

of the spiral length: a) for_iZ =1, w =1, Re =100, Pr=100, 6
€[r/2, 6r]; D) fork =1, w =1, Re =100, Pr =200, 6 € [0, 67].

2

A

B—28 ('QJW‘ D7 0" I o147 Pﬁ“ﬁ’i(_f"_-)q : (22)
\ 00 'VI/U LI/Z 'V1/3174/3

We note that g is proportional to D!/2.

b. L = L*. The length of the spiral is now comparable with that of the fully grown diffusion layer,
At distance L* the thickness of the diffusion layer becomes comparable with that of the liquid
film. In physical terms, this corresponds to relatively low values of the Prandtl number (Fig. 3).
In this case the distance over which the diffusion layer attains full growth becomes the charac-
teristic dimension. The mass-transfer coefficient is now determined by inserting the value of L*
from (20) into (21):
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In this case the mass-transfer coefficient is proportional to the diffusivity and an increase in the
flow rate of the liquid reduces the mass transfer.

c. L >» L*., The length of the spiral exceeds by far the length of the diffusion layer. In this case,
beginning at some distance, liquid will accumulate on the spiral wall. I order to account for
this in the calculation of the mass-transfer coefficient, one must solve the same equation of
convective diffusion (13) but with different boundary conditions:

for y =: 8 ¢=:c. (at the interphase boundary)
24)

do
for y =20 EL = 0, ¢ ==y (at the spiral wall).
Y

Moreover, the concentration at the spiral wall must be determined from that solution. The bound-
ary conditions (24) are satisfied by the second-degree polynomial

Oy (g m | Y (25)
Co Co Cor &

Solving Eq. (13) with the boundary condition (25) by the method described here, we find an expres-
sion for the umknown concentration at the spiral wall:

—%_l_exp_‘lo dx)
P 11Pe) 6(x) ) (26)

The mass-transfer coefficients must, of course, be averaged over the distance from 0 to I. (L. denoting
the length of the spiral). Moreover, (15) describes the concentration profile from 0 to L* and (25) de-
scribes it from L* to L.
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According to the definition g = —————j D (»—"—) dx, we find
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where 6 and L* are given by formulas (9) and (19).

This analysis of possible mass-transfer modes leads to the following conclusion: the coefficient of
mass transfer to the liquid phase is a function of the diffusivity and of the hydrodynamic parameters, but
different for short spirals where the diffusion layer cannot fully grow (case a), for medium-long spirals
where the thickness of the diffusion layer is comparable with the film thickness (case b), and for long
spirals where a boundary layer builds up in the process of convective diffusion (case c),

u, v
p

R(x)

X, Y

pPq = const

hy

q = vohy

v = (3/2)(q/5)
5=0/h,

k =k/hg =1,/ 65hy
w =w(vy/hy)
0

Re = q/v

Pe =q/D
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3.

4.
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NOTATION

are the projections of the velocity vector V on the x and y axes, respectively;
is the pressure in the liquid film;

is the radius of curvature of the spiral;

are the projections of body forces on the x and y axes, respectively,
is the pressure at the surface of the liquid layer;

is the initial film thickness;

is the fiow rate of liquid;

is the characteristic velocity;

is the dimensionless film thickness;

is the dimensionless parameter of an Archimedes spiral;

is the angular velocity of a rotating spiral channel;

is the thickness of the diffusion layer;

is the Reynolds number;

is the Peclet number.
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